Trichostatin A and nuclear reprogramming of cloned rabbit embryos.

نویسندگان

  • L H Shi
  • J S Ai
  • Y C Ouyang
  • J C Huang
  • Z L Lei
  • Q Wang
  • S Yin
  • Z M Han
  • Q Y Sun
  • D Y Chen
چکیده

To investigate the influence of histone deacetylases on nuclear reprogramming after nuclear transfer, we treated the cloned embryos with a histone deacetylase inhibitor, Trichostatin A (TSA). In the present study, global changes in acetylation of histone H3-lysine 14, histone H4-lysine 12, and histone H4-lysine 5 were studied in rabbit in vivo fertilized embryos, somatic cell nuclear transfer (SCNT) embryos, and TSA-treated SCNT embryos. From the pronuclear to the morula stage, the deacetylation-reacetylation changes in acetylation of histone H3-lysine 14 and histone H4-lysine 12 occurred in both fertilized embryos and TSA-treated cloned embryos; however, the distribution pattern in untreated cloned embryos failed to display such changes. More interesting, the signal of acetylation of histone H4-lysine 12 in cloned embryos was detected in both the inner cell mass and the trophectoderm, whereas TSA-treated cloned embryos showed the same staining pattern as fertilized embryos and the staining was limited to the inner cell mass. The histone acetylation pattern of TSA-treated SCNT embryos appeared to be more similar to that of normal embryos, indicating that TSA could improve nuclear reprogramming after nuclear transfer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O-18: Epigenetic Modification of Cloned Embryo Development; State of ART

Background: At the outset of the somatic cell nuclear transfer (SCNT) process, the chromatin structure of the somatic cell which governs its state of differentiation undergoes dramatic changes, called reprogramming, and is compelled back to the embryonic stage. However, the overall epigenetic makeup of the resultant cloned embryos has been acknowledged far different from the fertilized embryos....

متن کامل

I-12: Nuclear Reprogramming in Bovin Somatic Cell Nuclear Transfer

Somatic cell nuclear transfer (SCNT or cloning) returns a differentiated cell to a totipotent status; a process termed nuclear reprogramming. Reproductive cloning has potential applications in both agriculture and biomedicine, but is limited by low efficiency. To understand the deficiencies of nuclear reprogramming, our research has focused on both candidate genes and global gene expression pat...

متن کامل

Dynamic reprogramming of histone acetylation and methylation in the first cell cycle of cloned mouse embryos.

Epigenetic reprogramming is thought to play an important role in the development of cloned embryos reconstructed by somatic cell nuclear transfer (SCNT). In the present study, dynamic reprogramming of histone acetylation and methylation modifications was investigated in the first cell cycle of cloned embryos. Our results demonstrated that part of somatic inherited lysine acetylation on core his...

متن کامل

Trichostatin A Rescues the Disrupted Imprinting Induced by Somatic Cell Nuclear Transfer in Pigs

Imprinting disorders induced by somatic cell nuclear transfer (SCNT) usually lead to the abnormalities of cloned animals and low cloning efficiency. Histone deacetylase inhibitors have been shown to improve gene expression, genomic methylation reprogramming and the development of cloned embryos, however, the imprinting statuses in these treated embryos and during their subsequent development re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of animal science

دوره 86 5  شماره 

صفحات  -

تاریخ انتشار 2008